S.A.C.

Students Against Crashes Instructor's Guide - Session One

PPT 1	Introduction: Instructors and assitants should introduce themselves and tell why they are offering this course; to promote safe driving to students and other inexperienced drivers. - Explain the purpose, goals, and objectives for this program. Any class rules and housekeeping rules should be given. - Explain what the three sessions will involve, and all class materials should be distributed.
$\begin{gathered} 2- \\ \text { Video Clip- } 35 \\ \text { mph crash } \end{gathered}$	You are about to see a live crash that occurred just as a TV news crew was doing a segment on a dangerous intersection. Look at how they come together, at what speed, and where they stop at final rest.
3- Crash Definition	The key point to the definition is the word "unintended". It would not be called an accident if it were an intentional act. A criminal ramming a poice cruiser with his car would not be an accident, by definition. Neither would a suicide by automobile or damage caused by a hurricane or tornado.
4Investigation definition	A rational, fair, and objective investigation and conclusion as to how the crash occurred. There is only one government agency working 24/7 and is charged with the responsibility to investigate vehicle crashes.
5- Why investigate	Stress the tremendous personal, social, and economic loss to society because of vehicle crashes. Photos from this " 155 mph crash" file and a very interesting history of that crash are included in CD addendum file.
6- Why investigate	As many victims die in car crashes each year as died during the entire Vietnam War which lasted over 10 years. The average fatality or serious crash costs over one million dollars.
7- Why investigate	Explain why the public must have a fair, impartial investigation; that justice cries out for clear causes of fault and fair compensation for pain, suffering, and property loss. The police agencies are charged with this task as they are the only round-the-clock agency representing government and ensuring public safety.
8- Investigation process	Most accidents are caused by one or more of the three key components: the road, the vehicle, the driver. Officers examine all three. Question to class- "If the witness statements contradict the physical evidence, which would you tend to favor?" Answer- the physical evidence, because it doesn't lie and doesn't change its mind under duress, peer pressure, or the passage of time. The investigator finds the scene as it ends up, and must work backwards to "reconstruct" how the vehicles came together.
9- Responsibilities	These bullet points are other factors the investigator must consider in the accident. We will touch upon a few of these during this session. We will make the connection between accident causes and the bad driving habits that

	lead up to them.
10- Critically Examine	Each of these items tells a story and is a clue to how the accident occurred. At times, the cause is quite clear with little evidence. At other times, too many clues cause complications. These four bullet points are key physical evidence features the officere examines. Each tells a story, is a piece of the puzzle that explains how the accident happened.
11-Damage	There are four classifications of vehicle damage in most state vehicle crash reports: Slight- is only cosmetic damage and does not affect driving or car performance. Moderate- may require some body work or other repair for the car to be safe for the highway and pass road inspection (lights or turn signals out, flat tire, etc). Severe- car will require extensive repairs or may be totalled (by legal definition) and must be towed from the scene. Demolished- car is ready for the 'crusher'.
12- Classification	Various types of evidence are classified as to how long they will last. Obviously the investigator photographs, measures, and documents the temporary and short-lived evidence first. Temporary evidence: liquids, debris, tire prints, tire shadow marks, bodies, and vehicles on travelled portions of highway. Short-lived evidence: skidmark smears, gouges or scrapes in the road, oil and blood stains, damage to fixed objects, vehicles off the travelled portion of the highway. Permanent evidence: much more long-lasting and can be examined in the future. These include lane and road width, trees, utility poles, vegatation, curbs, street addresses, road contours and elevation.
13- Review the clip again	Ask the class to examine the video clip looking for the evidence you just identified and reviewed such as temporary, short lived, and permanent items. Ask them to listen to the sounds involved in the crash. Was there braking before the crash? What about skid marks, debris, car parts, etc?
$\begin{gathered} 14- \\ \text { Video Clip- } 35 \\ \text { mph crash } \end{gathered}$	- Point out the whooshing sound as the tire blows out. - Point out car parts flying in the air and on the roadway from both vehicles. Point out the final rest of both vehicles and skidmarks leading up to them. Will a car skid farther on blacktop or on grass? - Mention the term momentum (speed combined with weight) of the pickup truck. - Explain why that caused both vehicles to spin in the direction of the path of the pickup truck. - Ask for and allow questions and comments from the class. - Ask the question, "was this crash caused by the roadway, the vehicle, or the driver?"

$\left.\left.\begin{array}{|c|l|}\hline & \begin{array}{c}\text { • You may want to back up the slide and have the class view the crash a } \\ \text { second time. }\end{array} \\ \text { • This is the first time many of the students have seen an entire, live, } \\ \text { unrehearsed crash sequence. }\end{array}\right\} \quad \begin{array}{l}\text { Explain that often we see the aftermath of a crash and wonder how the } \\ \text { cars got there. } \\ \text { Here is a chance to see how cars come together in a frequent } \\ \text { intersection type crash and how they end up where they do. }\end{array}\right\}$

	stopping power). Conversly, chains and studs have just the opposite effect on dry pavement. They lessen the surface contact area of tire to roadway lowering the effective drag factor and dramatically increasing safe stopping distances.
27- Length of skid	The length of the skidmark is the key measurement in the drag factor formula. This determines the drag factor for that road surface. Other factors such as road elevation and percentage of braking play a lesser role in determining drag factor.
	Ask the class what advantage chains or studded tires have. Over what surfaces are they effective?
How do chains or studs affect drag factor on dry roads? (lower the drag factor and require more stopping distance.)	
factor tests	Drag factor may be determined in various ways. Four methods are listed in the slide. Test skids: have been the standard of the ages. Their lengths are plugged into the drag factor formula.
Drag sled: although more technical, has been around a long time. It is a	
31- Other	
formulas	
knead with a weight on it of known amount dragged over a surface with a	
known force (gauged by an instrument). Those numbers are put into the	
formula for the drag factor.	
Coefficient of friction table: lists high and low ranges of drag factors for	
know surfaces. When unable to determine drag factor from road tests, this	
table allows the investigator to bracket high and low speed ranges of the	
vehicle in question.	

	Perception-reaction time involves a driver perceiving a danger and then reacting to it. Numerous studies conclude this takes about one and a half seconds before braking begins. In session three, more time is spent with this concept and these two formulas. This session clearly demonstrates there is so much more to an accident scene than merely the skidmarks left on the roadway.
32- "Driving Dance"	The video "driving dance" is a series of slow-motion vehicle crashes set to music. It has humor, pathos, and shows a variety of crash types. Introduce the clip by asking the class to observe the various approach angles of cars before a crash and how they "bounce" off each other.
33- Session 2	Observe how broken glass flies in the direction the vehicle is travelling
"hans slide outlines what will be covered in session two. During this is the	
"reconstruct" what happened and how it happened. Students will observe a	
"test-skid" and measure it's length and will look for "skid shadows" at the	
beginning of the skid pattern. The students will compare the measurements	
with data from an accelerometer (if available). Then they will record their	
measurements for session three. During session three, the students will use	
the drag factor formula. Then the class will discuss other factors that may	
affect the drag factor of the roadway and how they affect a vehicle's handling	
on that surface.	

