S.A.C.

Students Against Crashes Instructor's Guide - Session One

DDT 4	
PPT 1	Introduction: Instructors and assitants should introduce themselves and tell
	why they are offering this course; to promote safe driving to students and
	other inexperienced drivers.
	• Explain the purpose, goals, and objectives for this program. Any class
	rules and housekeeping rules should be given.
	• Explain what the three sessions will involve, and all class materials
	should be distributed.
2-	You are about to see a live crash that occurred just as a TV news crew was
Video Clip- 35	doing a segment on a dangerous intersection. Look at how they come
mph crash	together, at what speed, and where they stop at final rest.
3- Crash	The key point to the definition is the word " unintended ". It would not be
Definition	called an accident if it were an intentional act. A criminal ramming a poice
	cruiser with his car would not be an accident, by definition. Neither would a
	suicide by automobile or damage caused by a hurricane or tornado.
4-	A rational, fair, and objective investigation and conclusion as to how the
Investigation	crash occurred. There is only one government agency working 24/7 and is
definition	charged with the responsibility to investigate vehicle crashes.
5- Why	Stress the tremendous personal, social, and economic loss to society because
investigate	of vehicle crashes. Photos from this "155 mph crash" file and a very
	interesting history of that crash are included in CD addendum file.
6- Why	As many victims die in car crashes each year as died during the entire
investigate	Vietnam War which lasted over 10 years. The average fatality or serious
0	crash costs over one million dollars.
7- Why	Explain why the public must have a fair, impartial investigation; that justice
investigate	cries out for clear causes of fault and fair compensation for pain, suffering,
8	and property loss. The police agencies are charged with this task as they are
	the only round-the-clock agency representing government and ensuring public
	safety.
8- Investiga-	Most accidents are caused by one or more of the three key components: the
tion process	road, the vehicle, the driver. Officers examine all three.
-	
	Question to class- "If the witness statements contradict the physical
	evidence, which would you tend to favor?"
	Answer- the physical evidence, because it doesn't lie and doesn't change its
	mind under duress, peer pressure, or the passage of time. The investigator
	finds the scene as it ends up, and must work backwards to "reconstruct" how
	the vehicles came together.
9- Responsi-	These bullet points are other factors the investigator must consider in the
bilities	accident. We will touch upon a few of these during this session. We will
	make the connection between accident causes and the bad driving habits that
	make the connection between accident causes and the bad driving fiabits that

	lead up to them.
10- Critically	Each of these items tells a story and is a clue to how the accident occurred.
Examine	At times, the cause is quite clear with little evidence. At other times, too
	many clues cause complications. These four bullet points are key physical
	evidence features the officere examines. Each tells a story, is a piece of the
	puzzle that explains how the accident happened.
11- Damage	There are four classifications of vehicle damage in most state vehicle crash
8	reports:
	Slight- is only cosmetic damage and does not affect driving or car
	performance.
	Moderate- may require some body work or other repair for the car to be safe
	for the highway and pass road inspection (lights or turn signals out, flat tire,
	etc).
	Severe- car will require extensive repairs or may be totalled (by legal
	definition) and must be towed from the scene.
10	Demolished - car is ready for the 'crusher'.
12-	Various types of evidence are classified as to how long they will last.
Classification	Obviously the investigator photographs, measures, and documents the
	temporary and short-lived evidence first.
	Temporary evidence: liquids, debris, tire prints, tire shadow marks, bodies, and vehicles on travelled portions of highway.
	Short-lived evidence: skidmark smears, gouges or scrapes in the road, oil
	and blood stains, damage to fixed objects, vehicles off the travelled portion of
	the highway.
	Permanent evidence: much more long-lasting and can be examined in the
	future. These include lane and road width, trees, utility poles, vegatation,
	curbs, street addresses, road contours and elevation.
13- Review the	Ask the class to examine the video clip looking for the evidence you just
clip again	identified and reviewed such as temporary, short lived, and permanent items.
	Ask them to listen to the sounds involved in the crash.
	Was there braking before the crash?
	What about skid marks, debris, car parts, etc?
14-	• Point out the whooshing sound as the tire blows out.
Video Clip- 35	• Point out car parts flying in the air and on the roadway from both
mph crash	vehicles. Point out the final rest of both vehicles and skidmarks
	leading up to them. Will a car skid farther on blacktop or on grass?
	• Mention the term momentum (speed combined with weight) of the
	pickup truck.
	• Explain why that caused both vehicles to spin in the direction of the
	path of the pickup truck.
	• Ask for and allow questions and comments from the class.
	• Ask the question, "was this crash caused by the roadway , the vehicle ,
	or the driver ?"

	• You may want to back up the slide and have the class view the crash a second time.
	• This is the first time many of the students have seen an entire, live, unrehearsed crash sequence.
	• Explain that often we see the aftermath of a crash and wonder how the cars got there.
	• Here is a chance to see how cars come together in a frequent
	intersection type crash and how they end up where they do.
15- Speed	Now transition to the investigating phase of the power point. Here we
estimates	determine speed based upon scientific study and mathematical formulas.
16- How do	Explain skidmark data is the most often used method of determining speed by
we determine	applying accepted math formulas. Technical accident reconstructionists can
speed	also determine impact speed by vehicle crush analysis.
17- Speed	This is a straight forward definition.
definition	
18- Speed	The "slide to stop" formula is listed in this slide with definitions of the letters
from	used in the formula. Once you know the drag factor of the roadway, you can
skidmarks	determini minimum "initial" speed before braking, by measuring the
smuniai Ko	skidmarks the vehicle laid down on the roadway
19- The "D"	The most importand piece of evidence is the skidmark measurement. The
in the formula	other items are not as critical as the total skidmark lengh of the vehicle. It is
In the formula	vital to have an accurate measurement of the skidmarks.
20- Skid	This slide tells how to obtain accurate skidmark data. Depending on time
distance	available, you may expand or contract this slide as needed.
21- Skid	Explain that impending skids (skid shadows) are the precursers to the deep,
shadows	dark skids we associate with a panic stop. They are part of the skid length
shauows	and most often overlooked in measurements. These skids help determine
	maximum braking before the driver loses control of steering in non-ABS
	vehicles. Explain that anti-lock brakes (ABS) lock and release the brakes
	several times a second, allowing the driver to maintain steering control. ABS
	also stops vehicles in up to a 30% shorter disance.
22- Skidmarks	The next two slides explain various types of skids the class observed on the
22- SKIUIIIAI KS	highway. Expand as time permits. Gap skids and skip skids are described.
23- Skidmarks	Spin skids and skids on various surfaces are explained. There is a "combined
	speed formula" that technical analysts use for skids on two or more different
	surfaces.
24- What is	Explain that drag factor is the friction or grip that tires have on the road. The
drag factor?	better the grip, the higher the drag factor number and the shorter the stopping
ulag lattol :	distance. Examples of drag factor numbers are given for concrete, asphalt,
	and other surfaces. Explain that water or ice make the drag factor very low
	and take much longer to stop the vehicle.
25- Influences	Materials on the roadway including liquids, dust, debris, or other materials on
	• • •
on drag factor	the surface (snow, water, ice, mud, car parts, or other items) can cause the
26- Tire	drag factor to be lower and require more distance to stop the vehicle.
	Items on tires affect the drag factor, such as tire composition, tread, tire chains or study, and tire defects. The amount of tread on a tire does not generally
composition	or studs, and tire defects. The amount of tread on a tire does not generally
	affect its stopping power on dry surfaces, however, more tread enables better stopping power on wat surfaces. Items attached to the tire, such as chains or
	stopping power on wet surfaces. Items attached to the tire, such as chains or stude, can affect the drag factor dramatically in heavy snow and sluch (better
	studs, can affect the drag factor dramatically in heavy snow and slush (better

	stopping power). Conversly, chains and studs have just the opposite effect on dry pavement. They lessen the surface contact area of tire to roadway lowering the effective drag factor and dramatically increasing safe stopping distances.
27- Length of skid	The length of the skidmark is the key measurement in the drag factor formula. This determines the drag factor for that road surface. Other factors such as road elevation and percentage of braking play a lesser role in determining drag factor.
	Ask the class what advantage chains or studded tires have. Over what surfaces are they effective?
	How do chains or studs affect drag factor on dry roads? (lower the drag factor and require more stopping distance.)
28- Drag factor tests	Drag factor may be determined in various ways. Four methods are listed in the slide.Test skids: have been the standard of the ages. Their lengths are plugged into the drag factor formula.
	Drag sled: although more technical, has been around a long time. It is a tread with a weight on it of known amount dragged over a surface with a known force (gauged by an instrument). Those numbers are put into the formula for the drag factor.
	Coefficient of friction table: lists high and low ranges of drag factors for know surfaces. When unable to determine drag factor from road tests, this table allows the investigator to bracket high and low speed ranges of the vehicle in question.
	Accelerometer: is a more modern electronic device that is suction-cupped to the windshield. Variations in the vehicle's G-forces activate this device. It gives an instant readout of skid distance, speed, the stopping time, and the drag factor. Police departments are using these type instruments more often as it quickly and accurately determines speed, braking distance, elapsed time, and roadway drag factor.
29- Drag factor formula	The unknown variable is isolated on the left side of the equation. You know the speed and distance. This formula reveals the drag factor. This is a basic math formula that can be worked on any standard calculator.
30- Test skids	This slide lists rules for performing test skids and for determining the drag factor for a crash area. Test skids are ideally done in the same direction of the crash. It is easier to track and measure skids on a vehicle without anti-lock brakes (ABS). Officers doing the skidmark demonstration in session two may consider removing the fuse from the ABS plug, allowing the cruiser to lay down black measureable skid marks. It is usually best to do at least two test skids and average the skid distance of the two. If results are dramatically different for the two skids, a third is usually performed.
31- Other formulas	To convert miles per hour (mph) to feet per second (fps), divide the number of seconds in an hour (3,600) into the number of feet in a mile (5,280). This equals 1.46, which rounds to 1.5 for this project. This formula is useful when doing a time-distance study in reconstructing an accident.

32- "Driving Dance"	 Perception-reaction time involves a driver perceiving a danger and then reacting to it. Numerous studies conclude this takes about one and a half seconds before braking begins. In session three, more time is spent with this concept and these two formulas. This session clearly demonstrates there is so much more to an accident scene than merely the skidmarks left on the roadway. The video "driving dance" is a series of slow-motion vehicle crashes set to music. It has humor, pathos, and shows a variety of crash types.
	Introduce the clip by asking the class to observe the various approach angles of cars before a crash and how they "bounce" off each other. Observe how broken glass flies in the direction the vehicle is travelling
33- Session 2	This slide outlines what will be covered in session two. During this is the "hands-on" session, students will see what police do at an accident scene to "reconstruct" what happened and how it happened. Students will observe a "test-skid" and measure it's length and will look for "skid shadows" at the beginning of the skid pattern. The students will compare the measurements with data from an accelerometer (if available). Then they will record their measurements for session three. During session three, the students will use the drag factor formula. Then the class will discuss other factors that may affect the drag factor of the roadway and how they affect a vehicle's handling on that surface.
34- Session 3	Returning to the classroom, students will apply the test-skid data to the drag factor formula. The same "teams" that took measurements together will compute the data together. They will then be given accident scenarios with new skidmark data. Next, the groups will determine the minimum initial speed of vehicles before the crash using the slide-to-stop formula that incorporates the drag factor you just determined. After that the students will back up even farther in the crash sequence by factoring in the perception- reaction time. By the end of session three, the students will have a truer understanding of the many factors at work in vehicle crashes. They will better understand why speed and following too closely are the primary causes in accidents involving young drivers.